Interpolation theorems for self-adjoint operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation Theorems for Self-adjoint Operators

We prove a complex and a real interpolation theorems on Besov spaces and Triebel-Lizorkin spaces associated with a selfadjoint operator L, without assuming the gradient estimate for its spectral kernel. The result applies to the cases where L is a uniformly elliptic operator or a Schrödinger operator with electromagnetic potential.

متن کامل

Multilinear Interpolation between Adjoint Operators

Multilinear interpolation is a powerful tool used in obtaining strong type boundedness for a variety of operators assuming only a finite set of restricted weak-type estimates. A typical situation occurs when one knows that a multilinear operator satisfies a weak L estimate for a single index q (which may be less than one) and that all the adjoints of the multilinear operator are of similar natu...

متن کامل

5: Inner Products, Adjoints, Spectral Theorems, Self-adjoint Operators

Lemma 1.2 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional vector space over a field F, and let T : V → V be a linear transformation. Suppose V has an ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ] β β = diag(λ1, . . . , λn). Lemma 1.3. Let V be a fini...

متن کامل

Off-diagonal Multilinear Interpolation between Adjoint Operators

We extend a theorem by Grafakos and Tao [4] on multilinear interpolation between adjoint operators to an off-diagonal situation. We provide an application.

متن کامل

Stability indices for constrained self-adjoint operators

A wide class of problems in the study of the spectral and orbital stability of dispersive waves in Hamiltonian systems can be reduced to understanding the so-called “energy spectrum,” that is the spectrum of the second variation of the Hamiltonian evaluated at the wave shape, which is constrained to act on a closed subspace of the underlying Hilbert space. We present a substantially simplified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis in Theory and Applications

سال: 2009

ISSN: 1672-4070,1573-8175

DOI: 10.1007/s10496-009-0079-y